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A B S T R A C T   

The oral delivery of peptide therapeutics could facilitate precision treatment of numerous gastrointestinal (GI) 
and systemic diseases with simple administration for patients. However, the vast majority of licensed peptide 
drugs are currently administered parenterally due to prohibitive peptide instability in the GI tract. As such, the 
development of GI-stable peptides is receiving considerable investment. This study provides researchers with the 
first tool to predict the GI stability of peptide therapeutics based solely on the amino acid sequence. Both un
supervised and supervised machine learning techniques were trained on literature-extracted data describing 
peptide stability in simulated gastric and small intestinal fluid (SGF and SIF). Based on 109 peptide incubations, 
classification models for SGF and SIF were developed. The best models utilized k-Nearest Neighbor (for SGF) and 
XGBoost (for SIF) algorithms, with accuracies of 75.1% (SGF) and 69.3% (SIF), and f1 scores of 84.5% (SGF) and 
73.4% (SIF) under 5-fold cross-validation. Feature importance analysis demonstrated that peptides’ lipophilicity, 
rigidity, and size were key determinants of stability. These models are now available to those working on the 
development of oral peptide therapeutics.   

1. Introduction 

Peptide-based drugs represent a significant class of biological treat
ments, with market-leading successes including liraglutide (Victoza®), 
goserelin (Zoladex®), and leuprolide (Lupron®). Due to their compar
ative structural complexity, peptide-based drugs typically facilitate 
enhanced target specificity compared to conventional small molecule 
drugs, affording higher therapeutic success and reduced off-target ef
fects (Camela et al., 2021; Lasa et al., 2022). Despite their many ad
vantages, peptide-based drugs are often unstable in the gastrointestinal 
(GI) tract, requiring over 90 % of marketed peptide therapeutics to be 
administered parenterally (Kremsmayr et al., 2022). Parenteral admin
istration is a key driver of the high costs and reduced accessibility 
associated with biopharmaceutical treatments, as healthcare pro
fessionals must typically be present for the administration of each dose 
(Makurvet, 2021). Further, injections are less acceptable to patients than 
oral formulations, with injection frequency particularly associated with 

lower health-related quality of life (Boye et al., 2011). For these reasons, 
the development of orally-administered peptide therapeutics presents a 
key opportunity to improve current treatment strategies for numerous 
diseases (Abramson et al., 2022; Zhang et al., 2021). 

A considerable challenge facing oral peptide delivery is low 
bioavailability due to poor peptide stability and/or permeability in the 
GI tract. Peptide physicochemical characteristics determine suscepti
bility to GI degradation and permeability across the epithelium (Klepach 
et al., 2022; Lau and Dunn, 2018). By optimizing GI peptide stability, 
peptides are available for local therapeutic action and are more likely to 
reach the epithelium intact for systemic access. There are two main 
barriers facing the GI stability of peptides: gastric acid and intestinal 
enzymes (Wang et al., 2015b). Due to their selectivity, it is imperative 
that peptide drugs maintain a conformation that allows them to interact 
with their physiological target. The high concentration of protons in 
gastric fluid can denature therapeutic peptides by destabilizing their 
secondary and tertiary structures through the disruption of hydrogen 
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and ionic bonds (Wicke et al., 2021). Gastric acid also activates pepsin, 
an enzyme that can cleave peptides into inactive fragments (Kremsmayr 
et al., 2022). Moreover, both human and microbial enzymes in the small 
and large intestine can inactivate peptides. For example, pancreatic se
cretions entering the small intestine contain peptidases with broad 
substrate specificity, including enzymes that can cleave peptides at ar
omatic, charged, and neutral residues (Ahmed et al., 2022; Whitcomb 
and Lowe, 2007). The intestinal microbiota also produces enzymes with 
wide functionality that can chemically inactivate small molecule and 
peptide drugs alike (McCoubrey et al., 2021). Whilst microbiota do 
colonise the small intestine, the colon houses the highest density of 
microorganisms of the entire body, thus biopharmaceuticals targeted to 
the colon are at particular risk of microbial inactivation (McCoubrey 
et al., 2022a; Yadav et al., 2016). 

At present there is no validated method for predicting the GI stability 
of peptides intended for oral delivery (Drucker, 2020). Whilst prior 
research has revealed that engineering peptide backbones with unnat
ural amino acids, ᴅ-amino acids, cyclisation, polymer conjugation, and 
increasing lipophilicity can protect peptides from enzymatic inactiva
tion in intestinal fluids, the extent that these modifications can improve 
stability has not been broadly quantified (Drucker, 2020; Elfgen et al., 
2019; Zizzari et al., 2021). One reason that a predictive technology does 
not yet exist is the extensive molecular space available for peptide 
design (Narayanan et al., 2021). Peptides are proteins containing 2 – 50 
amino acids, conferring considerably greater structural complexity and 
possible configurations than small molecule drugs (Drucker, 2020; 
Forbes and Krishnamurthy, 2022). As such, the comprehension of how 
such a large chemical space maps to interactions with the multifarious 
components of GI fluids has eluded human assessment; traditional tools 

used for small molecule drugs, such as Lipinski’s Rule-of-5, are less 
reliable for peptides (Brayden et al., 2020; Lohman et al., 2019; Nielsen 
et al., 2017). Here artificial intelligence (AI) can be utilized to identify 
important trends within dense datasets and output predictions for un
tested peptides’ stabilities (Narayanan et al., 2021). Machine learning 
(ML), a form of AI, has been widely harnessed in recent years to predict 
protein structure and functionality, such as protein binding affinity to 
specified targets (Gao et al., 2020; Jumper et al., 2021). ML has great 
potential for detecting how slight nuances in peptide structure can 
impact stability in the GI tract; the advantages of such knowledge 
include pre-clinical prediction of peptide suitability for oral delivery and 
design of novel highly stable peptide structures (Chandrasekaran et al., 
2018; Gao et al., 2017). 

In this study, various ML strategies were developed and compared for 
their ability to predict the stability of peptide drugs in simulated gastric 
and small intestinal fluid (SGF and SIF, respectively) using peptide 
structure as an input. The training dataset was constructed using a 
strategic literature mining approach and learning performance was 
benchmarked against a baseline model that reported the arithmetic 
mode (i.e. the most frequent class) of peptide stability in the training 
dataset. The findings reveal important structure-stability relationships 
for the design of novel oral peptide therapeutics and facilitate the pre
diction of any untested peptide’s stability in the human GI tract. The 
optimized predictive models are available online at: https://github. 
com/FrankWanger/ML_Peptide. 

2. Materials and methods 

A schematic representation of this study’s pipeline is shown in Fig. 1. 

Fig. 1. A schematic representation of the study’s pipeline. Unsupervised: unsupervised machine learning to explore relationships between the physicochemical 
properties of the peptides included in the dataset; Supervised: supervised machine learning to build predictive models that take physicochemical properties as inputs 
and output predictions on gastrointestinal stability; PCA: principal component analysis; RF: random forest; kNN: k-nearest neighbor; LR: logistic regression; DT: 
decision tree; SVM: support vector machine; RFE: recursive feature elimination. 
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Peptide stability data was first identified and extracted from online 
literature, followed by data featurization and pre-processing. Unsuper
vised learning, ML that does not require the target class to be labelled 
(Bell, 2022), was first conducted to visualize the database and to 
compare extracted peptides with a larger ‘peptide space’ formed by the 
U.S. Food and Drug Administration (FDA)-approved therapeutic pep
tides. Then, supervised learning algorithms, which utilize labelled data 
to form predictions (Bell, 2022), were benchmarked, and feature se
lection was conducted to further improve model performances. Finally, 
model classification performances were analyzed and feature interpre
tation was conducted to shed light on the knowledge obtained by the ML 
models. 

2.1. Database preparation 

2.1.1. Data collection 
The peptide stability training dataset was generated by retrieving the 

stability of peptides in SGF and SIF from the literature, identified via 
PubMed and Google Scholar. The SGF and SIF used in the literature 
studies were prepared according to USP guidelines and simulate the 
physiological pH of GI tract in the fasted state. Results generated from 
incubations with SGF and SIF were sought (for example, over stability 
data from animal models) because SGF/SIF stability is commonly 
assayed in industry, there is considerably more available data describing 
SGF/SIF peptide stability, and SGF stability has been reported as 
correlating well with gastric intestinal stability in humans (R2 = 0.917) 
(Wang et al., 2015b), whereas animal GI physiology can significantly 
differ to that of humans (Hatton et al., 2015; Kremsmayr et al., 2022). 
Although there is no published correlation between SIF and human in
testinal fluid for peptide stability, SIF is relevant due to its prominence in 
the pharmaceutical industry for oral drug development, for example in 
dissolution testing (Bou-Chacra et al., 2017). 

Specific search terms and the year of publication were used to find 
studies examining the in vitro stability of peptides. The key searching 
terms were ‘peptides’, ‘stability’, ‘peptide drugs’, ‘SGF’, ‘SIF’, ‘chemical 
stability’ and ‘GI tract’. The search operator words used for searching 
were ‘AND’ and ‘OR’. The specific search terms alongside the number of 
study results are presented in Table 1. The context and quality of each 
study was investigated by domain specialists to assure its relevancy 
before addition to the training dataset. The complete data selection and 
extraction process is presented in Fig. 2. 

2.1.2. Data extraction 
The majority of peptide stability data in SGF and SIF were directly 

acquired from publications as raw data. However, some stability data 
required extraction from figures. Here, the online tool WebPlotDigitizer 
(version 4.5 developed by PLOTCON 2017, Oakland, Canada (Rohatgi, 
2021)) was used to extract individual stability data points from digital 
figures. The reliability and usability of the data extracting program has 
been reviewed before when applied for extraction of protein stability; 
proving to obtain data with high reliability, validity and usability 
compared to other data extracting programs (Drevon et al., 2017). To 
obtain data using WebPlotDigitizer, peptide stability graphs were first 
exported from their original manuscript into either.jpeg or.pdf files. 
Within the extracting software each graph axis was marked and aligned, 

where the x-axis referred to time and y-axis represented percentage of 
remaining peptide in SGF/SIF. Each data point was then accurately 
marked. The location of each data point (x, y), which represented time 
and peptide stability respectively, was used to extract stability at 30 and 
120 min. These timepoints were chosen as they fall within the time that 
orally administered drugs would be exposed to gastric and small intes
tinal fluid (Awad et al., 2022; McConnell et al., 2008). This data was 
added to the database. 

2.1.3. Peptide featurization and data preprocessing 
Following data extraction, the database was structured. For each 

entry, the name of the peptide, the isomeric simplified molecular-input 
line-entry system (SMILES) notation of the peptide, the incubation 
environment (i.e., SGF or SIF), the percentage of drug remaining after 
30 min, and the percentage of drug remaining after 120 min were 
inputted into the database. Where SMILES notations were not presented 
in the original study, they were obtained using their peptide sequence 
via the PepSMI tool by NovoPro (novoprolabs.com), BIPPEP-UMW 
(Minkiewicz et al., 2019), or obtained through the PubChem database 
(Kim et al., 2021). Isomeric SMILES notations were used to encode the 
chirality of peptides, a molecular feature known to influence GI stability 
(Elfgen et al., 2019; Elfgen et al., 2017). 

To enable model learning the stability of peptides was binned into 
three categories: Stable (> 50 % peptide remaining at 120 min), Unstable 
(< 50 % at 30 min), and Partly Stable (> 50 % at 30 min and < 50 % at 
120 min). Following the preliminary processing of the database, mo
lecular featurization was carried out to represent peptides with chemi
cally diverse features. Here, 200 physicochemical properties were 
calculated for each peptide with RDKit (version 2020.03.3.0) using the 
isomeric SMILES notations. A detailed description of the features can be 
found in RDKit’s documentation (https://www.rdkit.org/). All feature 
names and the coded index used in this study was summarized in 
Table S1. In addition, the test environment feature was label-encoded 
into 1 and 0 to represent SGF and SIF, respectively. Other features 
were scaled within (0,1) using Equation (1): 

Xscaled =
X − Xmin

Xmax − Xmin
(1)  

where X represents the original value of the feature, Xmin represents the 
minimum value occurring in the database for this feature and Xmax 
represents the maximum. All data manipulation and pre-processing was 
implemented through Scikit-learn library (version 0.24.2). 

2.2. Model development 

2.2.1. Unsupervised data visualization 
Prior to supervised ML, the dataset was explored and visualized using 

Seaborn library (version 0.11.1). PCA was applied to reduce the di
mensions of the features into principal components, and the first two 
components (PC1 and PC2) were subsequently plotted to observe pep
tides within their feature space. The placement of peptides within their 
feature space allowed the analysis of structure-stability relationships by 
investigating the stability profiles of peptides sharing similar physico
chemical properties. 

Table 1 
Search terms used to identify relevant data for the training dataset and the number of studies listed per term.  

Search term 1 Search operator Search term 2 Search operator Search term 3 Number of PubMed results Number of Google scholar results 

Peptides AND Stability AND SIF 43 10,700 
Peptides AND Stability AND SGF 41 9,640 
Peptides AND Chemical Stability AND GI tract 10,792 55,600 
Peptides AND Stability AND GI tract Fluid 33 26 
Gastric stability AND Peptide drugs – – 68 32 
Peptide drugs AND SIF stability – – 31 320 
Peptide drugs AND SGF stability – – 23 6,740  
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In addition, to investigate how peptides in this extracted stability 
database distributed in the overall therapeutic peptide space, a larger 
database (THPdb, accessed 07/04/22) that included all FDA-approved 
peptide and proteins, published by Usmani et al., were plotted 
together using PCA (Usmani et al., 2017). In total, 239 peptides and 
proteins composed the THPdb. After manual removal of monoclonal 
antibodies and unfeaturizable molecules, 119 molecules were fea
turized, pre-processed and used as a representative ‘peptide space’. The 
peptides in the training database were plotted into the THPdb peptide 
space using PCA, this allowed analysis of the database peptides’ spread 
within the THPdb chemical space. 

2.2.2. Supervised model benchmarking 
Six different ML algorithms, known to be effective when working 

with smaller datasets, were developed and evaluated for prediction of 
peptide stability (Sugiyama, 2016; Zhang and Ling, 2018). Decision tree 
(DT), random forest (RF) and XGBoost were selected as representatives 
of tree-based models. Briefly, these tree-based models make single 
either-or decisions at consecutive nodes within decision trees. By 
combining multiple tree nodes in different manners like boosting 
(XGBoost) or bagging (RF), models can be better equipped to learn 
complicated non-linear relationships (Badillo et al., 2020; Vamathevan 
et al., 2019). For linear models, logistic regression with lasso (LR_Lasso) 
and ridge (LR_Ridge) penalty were chosen. Logistic regression is an al
gorithm that can convert continuous numbers (in this case the peptide 
physicochemical properties) through a logistic function and return cat
egorial outputs (peptide stability) (Bishop and Nasrabadi, 2006). In 
addition, k-nearest neighbor (kNN) with k = 1, 2, 4 (named as kNN_1, 
kNN_2, and kNN_4) and support vector machine (SVM) with a linear 
kernel (LinearSVC) were also included. kNN is a straightforward model 
that classifies unlabelled samples based on their similarity to labelled 
samples. Linear SVM generates a linear boundary between labelled 
datapoints and forms predictions for new data based on their position 
relative to the boundary (Bishop and Nasrabadi, 2006). A more detailed 
explanation of the modeling methods and their applications in drug 
discovery and development can be found in the systematic review by 
Vamathevan et al. (2019). Performances of all models were 

benchmarked against the baseline model, which was a model that al
ways predicted the most common class found in the training dataset. All 
models were trained using their default hyperparameters unless other
wise specified. Cross-validation (CV) on 5-folds with balanced accuracy 
and weighted f1 score (f1_weighted) as performance metrics was used to 
evaluate each model, as these metrics are suitable for the evaluation of 
unbalanced datasets (McCoubrey et al., 2021). 

The equations underlying balanced accuracy and f1 score are pre
sented in Equations (2) & (3), respectively, where true positives (TP), 
true negatives (TN), false positives (FP), and false negatives (FN) were 
calculated in a one-vs-rest manner in this multiclass classification 
problem. All models, except XGBoost, were implemented through the 
Scikit-learn library (version 0.24.2) (Pedregosa et al., 2011). The 
XGBoost model was based on the py-xgboost library (version 1.3.3). 

Balanced accuracy =

TP
TP+FP +

TN
TN+FN

2
(2)  

F1score =
TP

TP + 1
2 (FP + FN)

(3)  

2.3. Feature selection and importance 

Feature selection was performed in this study to examine perfor
mances of models trained on fewer, selected features. The selection 
process was achieved through both manual and automated selection, 
whereby manual selection was based on domain knowledge of peptide 
stability and automated feature selection screened important features 
automatically with a specific algorithm. Specifically, manual feature 
selection utilized existing domain knowledge from the previous publi
cation by Wang et al. in which the colonic stability of 18 peptides was 
investigated (Wang et al., 2015a). Features determined as important for 
large intestinal stability (molecular weight, polar surface area, hydrogen 
bond acceptors, hydrogen bond donors, rotatable bonds, and LogP) were 
manually selected for the prediction of SGF and SIF stability in this 
study. Whereas automated feature selection with recursive feature 
elimination (RFE) recursively removed features that were ranked the 
least important by the selected model until a certain criterion was met 

Fig. 2. Data collection flowchart for peptide stability data in SIF and SGF.  

F. Wang et al.                                                                                                                                                                                                                                   
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(e.g., an optimized accuracy where any further feature elimination had a 
detrimental effect on model performance) (Guyon et al., 2002). To 
elaborate further, in each round of feature selection, models that had the 
capability to evaluate feature importance (e.g., LASSO, RF, or XGBoost) 
produced a feature importance matrix after fitting the training data. 
Then, RFE was conducted by reading these matrices, eliminating three 
least important features, and re-fitting the model to give another round 
of feature important matrix. During this process, model performance 
was continuously monitored by 5-fold cross-validation. The feature 
elimination process was performed until there was no further 
improvement of the model performance. This was implemented through 
the RFECV method in the Scikit-learn library. The process of RFE was 
visualized as a heatmap, with the x-axis presenting the 201 features in 
the full feature set (1 incubation environment + 200 physicochemical 
properties) and the colour of the cells in the heatmap representing the 
importance assigned by the corresponding model on the y-axis. 

The impact of feature selection techniques on models’ performances 
was further analyzed using 5-fold CV with accuracy and f1 score as 
metrics. The most influential features for peptide stability were then 
investigated through feature importance plots and appraisal of the 
literature for corresponding scientific justification. 

2.4. Model evaluation and interpretation 

A more detailed inspection of the best-performing models was 
completed in addition to the evaluation with accuracy and f1 scores in 
model benchmarking; plotting classification confusion matrices pro
vided an intuitive means of visualizing various types of classification 
errors. Here, the confusion matrices of the selected models were 
generated using a simple training/prediction scenario without CV. 
Briefly, the data of the combined dataset and two sub-datasets (SGF only 
and SIF only) were partitioned at an 80/20 ratio as the train and test set, 
respectively. The predicted results were plotted against the ground truth 
values as a heatmap where a lighter colour in a cell represented more 
instances in the corresponding category. Specifically, correct pre
dictions, where the predicted values were the same as the ground truth 
values, sit on the diagonal line, whereas incorrect predictions spread 
over other cells in the matrix. 

Model interpretation was also conducted for two models, DT and 
XGBoost. The prediction steps in the DT were plotted to better under
stand the algorithm’s decision-making process. For both models, feature 
importances were extracted from the trained model to analyze individ
ual features’ contribution to peptide stability. However, the best model 
for the SGF dataset, kNN, was less interpretable by its nature and thus 
not analyzed further. 

In addition to the classification performance analyses, selected fea
tures were investigated with unsupervised PCA to understand their 
contributions to the peptide stability. Like the PCA analysis for the 
whole dataset, PCA was also performed on the features selected as most 
important. Since different feature sets were used in the best performing 
models, PCA analysis was performed separately for both feature sets 
chosen for the SGF and SIF datasets. In addition, the contributions of 
each selected feature to the principal components were quantified and 
analyzed. 

3. Results and discussion 

3.1. Database overview 

The searching queries on PubMed and Google Scholar returned 
approximately 874,000 publications, as indicated in Table 1. After 
refining the search results with specific terms and removing irrelevant 
articles, 16 publications were chosen for inclusion in the study (Sub
baiah et al., 2019; Arif, 2018; Bertoni et al., 2019; Braga Emidio et al., 
2021; Brancale et al., 2017; Cheloha et al., 2017; Claudius and Neau, 
1998; Luciani et al., 2017; Ma et al., 2012; Nielsen et al., 2017; Niu et al., 

2021; Pechenov et al., 2021; Wang et al., 2015a; Wang et al., 2015b; 
Yadav et al., 2016; Zupančič et al., 2017). From these publications a 
total of 109 entries of peptide stability results were extracted and 
formatted into the database. Exploratory analysis of the data revealed 
that 63/109 experiments were performed in SIF, and the remaining 46 
were performed in SGF, hence, the training dataset contained greater 
information pertaining to SIF stability (Fig. 3). Interestingly, most ex
periments conducted in SIF reported peptides as unstable, whereas the 
majority conducted in SGF reported peptides as being stable. Prior 
research does affirm that peptides are more susceptible to degradation in 
SIF than SGF (Chen and Li, 2012; Wang et al., 2015b). 

Further exploratory analysis revealed that the molecular weights of 
the peptides investigated ranged from 307 Da (L-glutathione) to 5778 Da 
(insulin), where the majority (89.9 %) of stable or partially stable pep
tides possessed a molecular weight below 3000 Da (Fig. 3B). Again, this 
finding correlates with the literature, which reports that peptides >
3000 Da are more likely to be unstable in simulated GI fluids (Chen and 
Li, 2012). Aside from molecular weight, the LogP feature, which de
scribes a compound’s lipophilicity, was another feature of interest, as it 
was previously found to positively correlate with 17 peptides’ colonic 
stability and is recognised as an important indicator of peptide oral 
bioavailability (Wang et al., 2015a). However, expanding this finding to 
our dataset of over 60 peptides revealed no obvious correlation 
(Fig. 3C). The range of LogP in our database ranged from − 21.5 
(calcitonin) to 11.2 (lactoferrin). Notably, all physicochemical proper
ties used here were calculated from RDKit. Thus, the absolute values 
were slightly different from those found in previous studies which 
calculated features with ChemSpider, however the values were still 
representative (Wang et al., 2015a; Wang et al., 2015b). 

Another feature that was also initially explored was the topological 
polar surface area (TPSA). TPSA, defined as the total surface area of 
polar atoms, is correlated with molecular weights to a certain extent. 
The analysis revealed that GI stability favoured TPSA values below 1250 
A2 (Fig. 3D), and 97.1 % of stable or partly stable peptides had a TPSA 
below 1250 A2. Indeed, research shows that peptides with lower polarity 
may have improved oral bioavailability (Boehm et al., 2017). Overall, 
these univariate analyses elucidated a degree of correlation between the 
stability of peptides in simulated GI fluids and defined physicochemical 
properties. 

The findings of the exploratory data analysis inferred possible cor
relations between peptide stability and their molecular weight and 
TPSA, while the LogP feature was relatively less related. As just 2 of 200 
possible physicochemical features used to describe peptides in this 
study, it was clear that a streamlined method for analysing GI peptide 
stability was needed given the high-dimensional database. Plotting and 
manual analysis of single features’ impact on stability would be 
exceedingly time-consuming and would not allow appreciation of the 
additive effects of multiple physicochemical features. As such, ML was 
identified as an ideal technology due to its efficacy in modeling high- 
dimensional data (Castro et al., 2021; McCoubrey et al., 2022b; Ong 
et al., 2022). 

3.2. Unsupervised modeling 

Unsupervised modeling was performed using PCA, a linear modeling 
technique that is simple to implement and can enable visual identifi
cation of structure–activity relationships (Fig. 4) (Badillo et al., 2020; 
McCoubrey et al., 2022b). Visualization of all 109 datapoints, describing 
both SGF and SIF stability, revealed no strong relationships between 
peptides’ physicochemical features and stability (Fig. 4A). Here, most 
stable peptides were clustered at PC1 values ≤ 2, however, the feature 
space also contained numerous unstable and several partly stable pep
tides, demonstrating that stability predictions for untested peptides 
could not be reliably formed. The clustering of peptide stability in SIF 
was stochastic and no discernible clusters could be observed (Fig. 4B). 
Further attempts to elucidate clustering for SIF samples using non-linear 

F. Wang et al.                                                                                                                                                                                                                                   
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Fig. 3. Data distribution of the peptide stability database on (A) testing GI environment, (B) molecular weight, (C) LogP, and (D) TPSA (topological polar sur
face area). 

Fig. 4. PCA analysis of the database with the full feature set. (A) Full database (n = 109, SGF and SIF data). (B) Small intestinal stability database (n = 63, SIF data), 
(C) Gastric stability database (n = 46, SGF data). 

F. Wang et al.                                                                                                                                                                                                                                   
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PCA were made to no avail (Figure S1). Separating the data by their 
incubation medium (i.e., SGF or SIF) revealed more discernible patterns 
for SGF, for which it was evident that stable peptides exclusively clus
tered at negative PC1 values (Fig. 4C). This result gave an early forecast 
for promising supervised model performances on the SGF dataset since 
the decision boundary could already be identified on the PCA plot. It 
also shed light on the difficulties of modeling SIF stability. Nonetheless, 
unsupervised analysis revealed that PCA could be utilized to analyze 
peptide stability in SGF. The unsupervised learning models could offer 
unique benefits because the 2D plot, compared to simply outputting the 
predicted results, may be more visually informative to users. 

PCA was also leveraged to generate a ‘peptide space’, composed of 
119 FDA-approved therapeutic peptides and proteins, was plotted 
together with the peptides in the stability database (Fig. 5) (Usmani 
et al., 2017). The peptide space was created by conducting PCA on the 
physicochemical features of the peptides. Therefore, the closer the 
peptide markers, the more similar their physicochemical properties. 
There is an overlaid area between the two databases, indicating that the 
peptide stability data was chemically representative of peptides on the 
market. Less than half of the peptides in the stability database spread 
outside the area formed by the peptides in THPdb, though PC1 values 

(which accounted for most of the explained variance) were slightly 
different between the datasets. The properties contributing most to PC1 
were HallKierAlpha, VSA_EState5, and MolLogP (positive contributors) 
and NumRotatableBonds, SMR_VSA10, and PEOE_VSA2 (negative con
tributors). This suggests that the main differences between peptides in 
the THPdb and stability datasets were based on these physicochemical 
properties. 

3.3. Supervised modeling 

3.3.1. Model benchmarking 
Following the PCA analysis, supervised ML techniques were applied 

to the full and separated databases (i.e., separated SGF and SIF data). 
The full performances results are listed in Table S2, and the best per
formance for each ML technique is presented in Fig. 6. All models were 
significantly better at predicting peptide stability than the baseline 
performances (accuracy: 36.7 % for the SGF dataset, 33.3 % for the SIF 
dataset, and 33.3 % for the combined full dataset). For the combined 
dataset, the XGBoost model obtained the best accuracy at 63.4 % and an 
f1 score of 72.8 %. For SGF stability, kNN and LR outperformed other 
models with accuracies of 65.7 % and f1 scores of 83.3 %. For SIF 

Fig. 5. Physicochemical distribution of the peptides within the stability database amongst the larger dataset of FDA-approved peptides (data from THPdb (Usmani 
et al., 2017)). 
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Fig. 6. Different model performances trained on SGF, SIF, and combined stability databases with the full feature set. Dashed lines represent baseline model per
formance, CV = 5, full results are available in Table S2. 

Table 2 
Features selected manually based on prior research and automated calculation (recursive feature elimination (RFE) with three different models (RF, XGBoost, LR)).  

Manual RF XGBoost LR 

Index Feature name Index Feature name Index Feature name Index Feature name 

0 Env 0 Env 0 Env 0 Env 
1 Mw 55 SMR_VSA3 5 MinAbsEStateIndex 15 FpDensityMorgan1 
74 TPSA 78 EState_VSA2 6 qed 18 BalabanJ 
106 NumHAcceptors 82 EState_VSA6 12 MinPartialCharge 51 PEOE_VSA9 
107 NumHDonors 84 EState_VSA8 25 Chi1v 59 SMR_VSA7 
109 NumRotatableBonds 90 VSA_EState4 50 PEOE_VSA8 65 SlogP_VSA12 
114 MolLogP   52 SMR_VSA1 70 SlogP_VSA6     

56 SMR_VSA4 77 EState_VSA11     
58 SMR_VSA6 78 EState_VSA2     
67 SlogP_VSA3 79 EState_VSA3     
76 EState_VSA10 82 EState_VSA6     
78 EState_VSA2 83 EState_VSA7     
82 EState_VSA6 90 VSA_EState4     
84 EState_VSA8 94 VSA_EState8     
85 EState_VSA9 121 fr_Ar_N     
87 VSA_EState10 133 fr_NH2     
90 VSA_EState4 134 fr_N_O     
94 VSA_EState8 138 fr_SH       

157 fr_ether       
163 fr_imidazole       
187 fr_priamide  
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stability, RF had the best accuracy of 66.8 % and an f1 score of 72.7 %. 
These results highlight that both linear and non-linear algorithms were 
effective in learning how peptides’ physicochemical features mapped to 
their stability in simulated GI fluid. 

3.3.2. Feature selection 
To further improve the performance of models, feature selection was 

conducted to refine the feature set by selecting only the most influential 
physicochemical predicters of peptide stability. The selected features are 
presented in Table 2. Manual and automated selection led to the iden
tification of various influential features that differed depending on the 
selection method used. Interestingly, peptide lipophilicity (represented 
by feature MolLogP and SLogP) was selected manually and by the 
XGBoost and LR automated methods, despite no obvious correlation 
being recognised during early dataset exploration (Section 3.1). This 
highlights the power of ML for identifying important factors in processes 
that may not be readily recognizable by simple data analysis methods 
(Elbadawi et al., 2021). Though prior research has identified molecular 
weight, TPSA, hydrogen bond acceptors, hydrogen bond donors, and 
rotatable bonds as important indicators of peptide colonic stability, 
these features were not recognized as important for SGF or SIF stability 
by the automated feature selection methods (Wang et al., 2015a). The 
feature selection process completed by RFE is presented in Figure S2, 
which revealed the ranking of every feature’s importance for each al
gorithm. All three automated selection methods identified the 

electrotopological state, ‘Estate’, and corresponding van der Waals 
surface area, ‘VSA’, of atoms as highly important in predicting peptide 
stability (Hall and Kier, 1995; Kier and Hall, 1990). Electrotopological 
states can be assigned to individual atoms in a peptide, and describe 
atoms’ electronic state as influenced by the surrounding atoms within a 
particular molecule (Hall et al., 1991). The higher an atom’s Estate, the 
higher its electronegativity, thus the electronegativity of peptides can be 
said to influence stability in SGF and SIF. 

ML analysis was repeated with the refined feature sets using the same 
ML techniques in Section 2; the results are presented in Fig. 7. For the 
combined SGF and SIF database, three of the four feature selection ap
proaches (manual, RFE on XGBoost, and RFE on RF) successfully 
improved the accuracy compared to using the full 200 features, with a 
maximum accuracy obtained using manual feature selection paired with 
DT learning. Here, the accuracy and f1 scores were 65.8 % and 75.8 %, 
respectively, which marked improvements of 2.4 and 3.0 percentage 
points, respectively. The DT’s decision-making process is presented in 
Figure S3, in which peptides’ number of rotatable bonds was the first 
decision node, followed by MolLogP and the incubation environment 
(SGF/SIF). Figure S4A shows that both MolLogP and the incubation 
environment had relatively high importance for the model, in addition 
to TPSA and number of rotatable bonds. In comparison the number of 
hydrogen bond acceptors was deemed less important in predicting 
peptides’ SGF/SIF stabilities. 

Improvements were also observed when splitting the dataset into 

Fig. 7. Model performances on (A) SGF, (B) SIF, and (C) combined stability database with full feature set, manual feature selection, and auto feature selection. 
Plotted with the best results for each feature set. Dashed lines represent baseline model performance, CV = 5, full results available in Table S3. 
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separate SGF and SIF datasets. The best recorded accuracy and f1 scores 
for the SGF dataset was 75.1 % and 84.5 %, respectively, which were 
improvements of 9.4 and 1.2 percentage points compared with model 
trained on the full feature set. This was achieved by the manual feature 
selection approach paired with kNN learning. On the other hand, the 
best performing ML model for the SIF dataset was achieved by auto
mated feature selection and XGBoost learning. The accuracy and f1 
scores increased to 69.3 % and 73.4 %, an increase of 2.4 and 0.8 per
centage points, respectively. The relative importance of the features 
within this model’s learning process are presented in Figure S4B. 
Therefore, and despite inputting considerably fewer features, it was 
demonstrated that feature selection could improve model performance 
by limiting model training to only the most influential features. 

The initial rationale of combining SGF and SIF data in the original 
dataset was that the mechanism of peptide breakdown or instability 
would be similar, and aid in learning the overall mechanisms of GI 
stability. However, models achieved better performances when trained 
on the separated SGF and SIF data, highlighting that different physico
chemical features and ML techniques were required for precise predic
tion of peptide stability in the distinct fluids. Based on these results, it 
can be inferred that the features chosen via manual selection are most 
predictive of peptide SGF stability and those selected via automated 
XGBoost selection are most predictive of SIF stability. The scientific 
rationale for the importance of these features will be discussed in the 
Section 3.4.2. Dedicated models specific to SGF or SIF could be useful for 
new peptide therapeutics that are primarily exposed to one fluid envi
ronment; for example peptides that are exposed to gastric fluid and then 
rapidly absorbed across the duodenal epithelium, or enteric coated 
peptides that are protected from interaction with gastric fluid (Shen and 
Matsui, 2019). 

3.4. Model evaluation and interpretation 

3.4.1. Classification performance analysis 
The results of the best performing models for all three datasets 

(combined, SGF only, SIF only) were examined. For the separate SGF 
and SIF datasets there was one misclassification each, which interest
ingly occurred between partially stable and either stable or not stable. In 
other words, the confusion occurred between adjacent classes. For the 
combined dataset, there were 3 misclassifications, where 2 mis
classifications involved partially stable peptides (Fig. 8). This highlights 
that stability profiles lying between highly stable and highly unstable 
states were more challenging to predict. 

3.4.2. Feature selection interpretation 
Fig. 9 shows the PCA plots and feature contributions for the top 

principal components for the two final models. Although PCA was 
initially performed at an early stage (Fig. 3), here, a clearer visualization 
of each feature’s contribution was made possible after feature selection 
due to greatly reduced dimensionality. 

Though different ML techniques and feature sets were used for the 
SGF and SIF datasets, it is apparent from the feature importance that 
hydrophilicity/hydrophobicity of peptides was important in predicting 
their stability in both incubation fluids. LogP, number of hydrogen bond 
acceptors/donors, TPSA, Estate and peptide charge are all related to the 
degree to which peptides interact with the components of the aqueous 
fluids. It is recognised that hydrophobic peptides are shielded from in
teractions with aqueous solutes; for example positively charged amino 
acids (such as arginine) increase peptides’ susceptibility to interaction 
with degradative enzymes, like trypsin (Kremsmayr et al., 2022). Lipo
philic peptides are also afforded the benefit of increased permeability 
across the gastric/small intestinal epithelium (Boehm et al., 2017; 
Brayden et al., 2020). Thus, the inclusion of hydrophobic amino acid 
regions within peptides is an intelligent technique for increasing peptide 
stability and permeability in the GI tract. 

Another strategy for imparting peptide stability in GI fluids is to 
increase the rigidity of peptide structures (Brayden et al., 2020; Nielsen 
et al., 2017). Conformational rigidity has been reported to increase 
peptides’ GI stability and bioavailability in vivo, as sites vulnerable to 
enzymatic degradation may be shielded from access, and gut membrane 
permeability is increased (Nielsen et al., 2015). The kNN model devel
oped to predict SGF stability in the present study is in agreement with 
the literature, as it successfully identified that the number of rotatable 
bonds in peptide structures is predictive of peptide stability. Decreasing 
the number of rotatable bonds in a peptide is an evidence-supported way 
to increase peptide stability in gastric fluid. 

Molecular weight was also identified by the SGF model as an 
important indicator of peptide stability. Past research has reported that 
peptides > 3000 Da are more likely to be hydrolyzed in SGF than smaller 
peptides, especially those < 1000 Da (Chen and Li, 2012). Smaller 
peptides may show enhanced structural stability compared to larger 
peptides and contain fewer peptide bonds susceptible to cleavage (Wang 
et al., 2019). Indeed, a study examining the stability of 17 peptide 
therapeutics found that smaller peptides (e.g., oxytocin, desmopressin, 
buserelin) were significantly more stable than larger peptides (e.g., 
glucagon, insulin, calcitonin) during incubation with SGF for 2 h (Wang 
et al., 2015b). Instability was largely attributed to the higher affinity of 
pepsin for covalent bonds in the larger molecules, as the large peptides 
were significantly more stable in enzyme-free SGF. As such, researchers 

Fig. 8. Confusion matrix analysis. (A) Best performing model on combined dataset (DT, manual feature selection). (B) Best performing model on intestinal dataset 
(XGBoost, RFE with XGBoost feature selection). (C) Best performing model on gastric dataset (kNN_1, manual feature selection). 
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developing new peptides that will be exposed to gastric fluids should 
consider molecular weight as an important design feature. Where pep
tides are required to be > 3000 Da for their therapeutic effect, enteric 
coats that shield the active molecules from pepsin could be utilized 
(Awad et al., 2022). 

The use of USP simulated GI fluids to study the behaviour of oral 
pharmaceutical formulations is common practice, therefore our model 
provides a means of predicting peptide stability in these media. With 
access to relevant data at the required quantities for ML, the general
izability of our model for in vivo conditions could be improved by 
considering peptide stability in more physiologically relevant fluids, 
such as those containing bile salts and small intestinal microbiota 
(Dening et al., 2021; McCoubrey et al., 2021). Another interesting ML 
task could be to predict the epithelial permeability of peptide drugs. 
Paired with prediction of GI stability, estimation of peptides’ intestinal 
permeability could facilitate calculation of their expected oral 
bioavailability. 

4. Conclusion 

In this study ML was applied to predict the stability of therapeutic 
peptides in SGF and SIF, using a training dataset of 109 peptide stability 
results extracted from the literature. Initial dataset exploration revealed 
that peptides with lower molecular weights (< 3000 Da) were more 
likely to be stable in both SGF and SIF. Further, TPSA values < 1250 A2 

were predictive of stability in both media. PCA clustering of all 109 
incubation results or SIF data alone did not lead to distinct relationships, 
however discernible peptide structure-stability patterns did emerge 
when clustering the SGF data alone. The best performing supervised ML 
models consisted of a kNN model trained on manually selected features 

for prediction of peptide stability in SGF, and an XGBoost model trained 
on automatically selected features for prediction of peptide stability in 
SIF. The accuracies of these models in 5-fold cross-validation were 75.1 
% (kNN model, for SGF) and 69.3 % (XGBoost model, for SIF); the f1 
scores were 84.5 % (kNN model, for SGF) and 73.4 % (XGBoost model, 
for SIF). Feature importance revealed that physicochemical properties 
pertaining to peptide molecular weight, hydrophobicity/hydrophilicity, 
and conformational flexibility were most influential in predicting pep
tide stability in the GI fluids. Importantly, these features agree with 
findings from preclinical and human studies, and provide evidence- 
assured strategies for researchers working to develop novel orally 
administrable peptide therapeutics. The models developed in this study 
have been made available for predicting the stability of untested pep
tides in SGF and SIF, and may be used to digitally screen the suitability 
of peptide drugs for oral administration. 

CRediT authorship contribution statement 

Fanjin Wang: Methodology, Software, Formal analysis, Investiga
tion, Writing – original draft, Writing – review & editing, Visualization. 
Nannapat Sangfuang: Methodology, Software, Investigation, Data 
curation, Writing – original draft, Writing – review & editing, Visuali
zation. Laura E. McCoubrey: Methodology, Software, Data curation, 
Writing – original draft, Writing – review & editing, Project adminis
tration. Vipul Yadav: Conceptualization, Methodology, Writing – re
view & editing, Supervision, Funding acquisition. Moe Elbadawi: 
Conceptualization, Methodology, Software, Formal analysis, Writing – 
review & editing, Project administration. Mine Orlu: Supervision, 
Funding acquisition. Simon Gaisford: Supervision, Funding acquisi
tion. Abdul W. Basit: Conceptualization, Methodology, Writing – 

Fig. 9. PCA analysis of the gastric and intestinal stability database and feature contributions to the principal components.  

F. Wang et al.                                                                                                                                                                                                                                   



International Journal of Pharmaceutics 634 (2023) 122643

12

review & editing, Supervision, Funding acquisition. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

A hyperlink to the GitHub repository has been made available in- 
text. 

Acknowledgements 

The authors acknowledge Intract Pharma Ltd. and The Engineering 
and Physical Sciences Research Council grants [EP/S023054/1; EP/ 
S009000/1] to UCL School of Pharmacy for funding this work. Bio
Render is also acknowledged for its use in designing the graphical 
abstract. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.ijpharm.2023.122643. 

References 

Abramson, A., Frederiksen, M.R., Vegge, A., Jensen, B., Poulsen, M., Mouridsen, B., 
Jespersen, M.O., Kirk, R.K., Windum, J., Hubálek, F., Water, J.J., Fels, J., 
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